
PC3-11

1

Introduction to the Segmented Finite-Difference Time-Domain Method

Yan Wu, Ian Wassell

Computer Laboratory, University of Cambridge, Cambridge, UK CB3 0FD

Abstract — In order to estimate path loss in various infrastructure types: tunnels, water distribution networks and bridges, we have
chosen the well known Finite-Difference Time-Domain (FDTD) technique [1] due to its accuracy, flexibility and potential for visualizing
the simulation results. However, problems occur owing to the high memory requirement and heavy computational burden when dealing
with these large-scale systems using this technique. Following our previous work on the unique correction factor, which enables us to
transform a simply structured 3D FDTD problem into a 2D simulation using the Modified 2D FDTD method [2], in this paper, we
propose the Segmented FDTD (SFDTD), which divides the problem space into segments so that the computational redundancy is
reduced. This technique also facilitates data reuse that eases the inconvenience imposed by configuration changes at a later date.

Index Terms— FDTD methods, Large-scale computing.

I. INTRODUCTION

The finite-difference time-domain (FDTD) technique is one of
the key simulation tools in the study of Electromagnetic
propagation. When one twentieth of the signal wavelength is
used as the basic element dimension i.e., unit cell size, good
accuracy can be achieved in a FDTD simulation [3]. When
conventional FDTD is applied to model large-scale problems
with high signal frequencies e.g., 2.40GHz, it becomes
extremely computationally demanding in terms of memory and
CPU execution time. Some of the typical simulation problems
of interest to us include the water distribution network which
requires that wireless sensors be located in fire hydrants
having an average spacing of 105m [4] or in tunnels with a
typical diameter of 4~5m and lengths of 100~1000m. To solve
the large-scale problem in the conventional FDTD method,
non-uniform FDTD technique has been proposed, where non-
uniform cells are used to form the problem space to ease the
computational burden [5]. Most commercially available FDTD
software also provides geometric theory of diffraction (GTD)
and Ray Tracing techniques to get around the downside of the
conventional FDTD [6]. In [7], a modified version of the 3D
FDTD method has led to a more memory-efficient
formulation, where only four field components are stored in
the whole domain, with a direct memory reduction of 33% in
the storage of the 3D electromagnetic fields. Most recently,
considerable research has been conducted concerning Parallel
Computing using the Message Passing Interface (MPI) [8].
However massively increasing computational hardware may
not always be cost effective. In [2], we have demonstrated that
by reducing 3D problems to 2D, large-scale problems can be
addressed using regular personal computers (PCs). In this
paper we present the SFDTD method, which further reduces
the computational requirements and enhances the feasibility of
running these simulations on a PC. For reason of simplicity,
our discussion is focused in a 2D domain though it could be
extended to address a full 3D situation. We will begin with a
description of the existing problem, and then discuss how the
proposed SFDTD method may be applied to a conventional

FDTD problem. We then undertake the performance
validations of the SFDTD method using the Plane Earth Model
as an example. Finally we present the conclusions.

II. PROBLEM DESCRIPTIONS

Our simulation is benchmarked using a 3.46GHz, 8GB
RAM Dell Precision PWS 380 computer. We assume that we
are dealing with a 2D FDTD simulation and the problem space
is of the dimension IE× JE, where JE is fixed to be 1000 unit
cells. According to the Courant Condition [9], which governs
the essential stability of the FDTD method, we assume that the
signal takes two time steps to travel through one unit cell in a
2D simulation, i.e.

02
x

t
c

∆∆ = ⋅ , (1)

where t∆ , x∆ and 0c are the duration of each time step, the

dimension of each unit cell and the speed of light in a vacuum
respectively. Fig.1 illustrates the exponentially increasing
relationship between the size of a problem space and the
computational execution time using the conventional FDTD
method. The memory usage in Fig. 2 is seen to increase
linearly with the length (IE) of the problem space. Note the
electromagnetic field evolves with time, consequently in a
large-scale FDTD simulation, a large amount of computational
power is wasted updating and calculating zero values before
the signal reaches the distant unit cells while in addition, a
huge amount of memory is required to hold all these zeros. In
order to introduce the SFDTD method, consider a problem

space (IE× JE) of dimension of 52.4 10× by 310 . This space
can be divided into 24 individual FDTD simulations (or

‘segments’) each of size 41.0 10× by 310 . We will show that
this results in a large reduction in computation time and
memory usage. The detailed description of the SFDTD
implementation will be presented in the next section.

PC3-11

2

Fig. 1. Problem Space vs. CPU Time

Fig. 2. Problem Space vs. Memory Usage

III. SFDTD METHOD

For now let us ignore the overheads due to the space taken
up by other factors, e.g., the absorbing boundaries. The
following procedures are applied to realise the SFDTD
concept that is also illustrated in Fig. 3:
1. Start the conventional FDTD iteration in Segment One

with the signal source S0.
2. When Segment One reaches its steady state, i.e., all the

multipath signals have arrived at each individual cell, then
record 200 samples: (i) At each unit cell on Interface One.
(ii) At the points of interest for the path loss investigation.

3. Save signals of length one-wavelength (i.e., one cycle in
time domain) from each unit cell recorded at the 2(i)

interface then form the interface array source S1. Note that
the extraction of the array source must take place at the
same sampling point in time; otherwise phase information
will be lost. The reason for saving one complete
wavelength of samples is to maintain the signal wave’s
continuity.

4. Synchronously propagate the extracted interface array
source at each corresponding unit cell in Segment Two.

5. Follow the same steps to complete the simulations in
Segments 2, 3, 4 and up to 24 for this example.

Fig. 4.a shows the recorded samples at one unit cell on an
interface. The unit cell size in our case is one twentieth of the
wavelength and each unit cell requires two time steps for the
signal to cross (defined by the Courant Condition). Hence each
wavelength needs 40 time steps (samples) in order to be
completely reconstructed and ready to be propagated in the
next segment. We are also able to tell if a segment has reached
its steady state by observing these samples. For example, Fig.
4.b shows the recorded samples before steady state is reached.

 (a) (b)

Fig. 4. Recorded samples of an interface cell

The computational time for the example using a conventional

FDTD method (52.4 10× cells × 1 segment) would take around
95 days and use over 7.16GB memory to store the data; while

the SFDTD method (41.0 10× cells× 24 segments) only takes
about 3.9 days with a memory usage of 307MB.

IV. PLANE EARTH PATH LOSS MODEL

Now we are going to validate our SFDTD method by
investigating the signal path loss for horizontally polarized
antennas in a plane earth environment at a frequency of
868MHz for a maximum antenna separation of 200m while
both transmitter and receiver antennas are at a height of 2m.
The ground is assumed to be perfectly conducting (i.e., metal).

The well-established analytical formulation for the plane

PC3-11

3

earth path loss model in decibels [10] can be expressed as:

Fig. 5. Plane Earth Model

10

22 2
10 log 1 exp

4PE

h hrtPL jk
RR

λ ρπ

= + , (2)

where ρ is the reflection coefficient for the reflected ray;

th and rh are the heights of the transmitter and receiver

antennas respectively;k is the free space wave-number

2π λ whereλ is the wavelength of the transmitted signal; For

our example, ρ in the horizontal polarization can be

expressed as:

() ()2 2) ()(sin cos sin cosHP r rjx jxρ θ ε θ θ ε θ−= − − + − − ,(3)

where 918 10x fδ= × ⋅ ; rε is relative permittivity of the

ground; δ is conductivity of the ground; θ is the angle
between the incident wave and the ground surface and f is the

transmit frequency.

V. PERFORMANCE VALIDATIONS

Before we actually perform any simulations in the example
plane earth environment, we need to firstly determine the total
number of time steps that are required to achieve steady state.
Obviously the more time steps that we iterate, the more
probable it is that the problem space is going to reach steady
state. The precise exactly number of total time steps required
differs from environment to environment not only owing to the
different distances of interest, but also the different multipath
effects in particular environments. Bearing this in mind, we
defined the time steps for each individual segment in this
model as: 8 times the ratio between the distance of interest and
the cell dimension x∆ (for short, we call it the 8*ratio time
scheme). Secondly, the distance to the absorbing boundaries
needs to be minimised. Intuitively, we want to ensure that the
points of interest are as far as possible from the absorbing
boundaries so that the effects of reflections can be minimised.
Our investigations have concluded that it is the JE dimension
(vertical direction in Fig. 5) that has the most significant effect
on the simulation results while the IE dimension (along the
distance of interest, i.e., the horizontal direction in Fig. 5) has
little effect in this scenario. Following our initial simulations
regarding this issue, we set JE to 4000 unit cells and set the
dimension of IE to be just sufficient to hold the absorbing
boundaries and a distance of 200m unit cells equivalent.

Therefore the corresponding 2D FDTD problem space is set
with JE equal to 4000 unit cells and segment lengths of 5m,
10m, 25m, 50m, 100m or 200m unit cells equivalent
respectively. The simulation results plotted on a log scale are

shown in Fig. 6, where the inset panel gives an enlarged view
of the distortions owing to the different choices of segment
size.

Fig. 6. Preliminary SFDTD Simulation Results

It can be seen that, in general, the SFDTD method produces
high accuracy results at close ranges regardless of the segment
size chosen, but shows more variability at longer ranges,
particularly for smaller segment sizes. Even so it can be seen
that the SFDTD simulation results fluctuate closely about the
analytical solution. To tackle this problem we apply a moving
average based filtering technique. This can be seen to reduce
the amplitude of the ripples and a very good fit for the various
segment sizes is achieved as shown in Fig. 7.

Fig. 7. Moving Averaged Segmented FDTD Simulation Results

Table 1 summarises the performance of the SFDTD
method in term of computational time and memory usage.
Even so, it turns out that we cannot infinitely decrease the
segment size for better computational performance. For
example, in Fig. 8, we observe that the use of 2m segments
gives rise to huge instability. This is because the total number
of time steps (8*ratio time scheme) that we iterate in each
segment is not sufficient for the segment to reach its steady
state. To fix the problem and so achieve stability in the
SFDTD simulation for the 2m segment size, our time scheme

PC3-11

4

is altered by increasing the total number of time steps from an
8*ratio time scheme to 20*ratio time scheme as seen in Fig. 8.

 CPU Time (hrs) Memory Usage (MB)
200m× 1 segment 55.170 1,474
100m× 2 segment 28.646 757
50m × 4 segments 22.590 399
25m × 8 segments 8.745 214
10m × 20 segments 4.877 115
5m × 40 segments 3.660 77
2m × 100 segments 3.350 (unstable)

 8.375 (stable)
 60

TABLE 1. SEGMENTED PLANE EARTH MODEL PERFORMANCE COMPARISONS

Fig. 8. 2m Segment stability vs. instability with different time schemes
Obviously, for a certain time scheme, an optimal (in terms

of computational performance) segment size exists. The
relationship between the total CPU execution time and the
segment size can be calculated as:

_ _Total CPU Time n dt N= ⋅ ⋅ , (4)

wheren is the number of time steps (iterations) for each
segment to reach its steady state, dt is the CPU time required
for each single time step (iteration) in the segment and N is
the number of segments divided from a problem. To maintain
the stability of the SFDTD in the plane earth example we have
discussed, Fig. 9 shows the total CPU time requirements.

VI. CONCLUSION

In conclusion, by reducing the segment size and taking the
stability issue into consideration, the proposed SFDTD
technique for implementing FDTD modeling allows the CPU
execution time to increase only linearly with the number of
segments instead of exponentially increasing as seen in a
conventional FDTD.

The SFDTD method also enhances reusability of the
simulation data. For example, we can use the saved interface
array sources to further extend the simulation in terms of
problem dimensions and changes to the simulated
environment. However, note that the SFDTD method also
requires that:
a. The PMLs are reasonably efficient as absorbing boundary

conditions in order to reduce the overhead owing to each
segment.

Fig. 9. Total computational time for the SFDTD stability in the plane earth

model described in Section IV.

b. The size of the segments needs to be carefully chosen and
should include features that have the potential to introduce
significant effects on the equivalent source array. i.e., signal
reflections from the next segment must be insignificant
compared with the signal level in the current segment;
otherwise, the equivalent array source loses its precision.
The 2D SFDTD technique will be applied to tunnels and to

below to above ground situations (i.e., Fire Hydrants) in our
future work.

REFERENCES

[1] K. Yee, “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media”, IEEE Trans.
Antennas Propag., vol. 14, pp. 302-307, 1966.

[2] Y. Wu, M. Lin and I. J. Wassell, “Path Loss Estimation in 3D
Environments using a Modified 2D Finite-Difference Time-Domain
Technique”, The IET 7th International Conference on Computation in
Electromagnetics, CEM 2008. pp. 98-99, Apr. 2008.

[3] D. M. Sullivan, Electromagnetic Simulation using the FDTD Method,
Wiley-IEEE Press, pp. 8, Jul. 2000.

[4] M. Lin, Y. Wu, I. J. Wassell, “Wireless Sensor Network: Water
Distribution Monitoring System”, 2008 IEEE Radio and Wireless
Symposium

[5] D. White, M. Stowell, J. Koning, R. Rieben, A. Fisher, N. Champagne,
and N. Madsen, “Higher-Order Mixed Finite Element Methods for Time
Domain Electromagnetics”, Feb. 2004.
http://www.llnl.gov/tid/lof/documents/pdf/304775.pdf

[6] Joseph W. Schuster, and Raymond J. Luebbers, “FDTD Techniques for
Evaluating the Accuracy of Ray-Tracing Propagation Models for
Microcells”, Remcom, Inc.
http://www.remcom.com/multimedia/publications/fdtd.pdf

[7] G. D. Kondylis, F. De Flaviis, G. J. Pottie and T. Itoh, “A Memory-
Efficient Formulation of the Finite-Difference Time-Domain Method for
the Solution of Maxwell Equations”, IEEE Trans. Microwave Theory
Tech, vol. 49, No. 7, pp. 1310-1320, Jul. 2001.

[8] W. Yu, R. Mittra, T. Su, and Y. Liu, “A Robust Parallelized Conformal
Finite Difference Time Domain Field Solver Package Using the MPI
Library”, IEEE Antennas and Propagation Magazine, vol. 47, No. 3,
pp. 354-360, Mar. 2005.

[9] A. Taflove and S. C. Hagness, Computational Electrodynamics the
Finite-Difference Time-Domain Method, 3rd ed., Artech House
Publishers, pp. 132, Jun. 2005.

[10] S. R. Saunders, Antennas and Propagation for Wireless Communication
Systems, Wiley, Aug. 2004.

