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Abstract — In order to estimate path loss in various infrastructure types: tunnels, water distribution networks and bridges, we have 
chosen the well known Finite-Difference Time-Domain (FDTD) technique [1] due to its accuracy, flexibility and potential for visualizing 
the simulation results. However, problems occur owing to the high memory requirement and heavy computational burden when dealing 
with these large-scale systems using this technique. Following our previous work on the unique correction factor, which enables us to 
transform a simply structured 3D FDTD problem into a 2D simulation using the Modified 2D FDTD method [2], in this paper, we 
propose the Segmented FDTD (SFDTD), which divides the problem space into segments so that the computational redundancy is 
reduced. This technique also facilitates data reuse that eases the inconvenience imposed by configuration changes at a later date. 
 

Index Terms— FDTD methods, Large-scale computing. 
 
 

I. INTRODUCTION 

The finite-difference time-domain (FDTD) technique is one of 
the key simulation tools in the study of Electromagnetic 
propagation. When one twentieth of the signal wavelength is 
used as the basic element dimension i.e., unit cell size, good 
accuracy can be achieved in a FDTD simulation [3]. When 
conventional FDTD is applied to model large-scale problems 
with high signal frequencies e.g., 2.40GHz, it becomes 
extremely computationally demanding in terms of memory and 
CPU execution time. Some of the typical simulation problems 
of interest to us include the water distribution network which 
requires that wireless sensors be located in fire hydrants 
having an average spacing of 105m [4] or in tunnels with a 
typical diameter of 4~5m and lengths of 100~1000m. To solve 
the large-scale problem in the conventional FDTD method, 
non-uniform FDTD technique has been proposed, where non-
uniform cells are used to form the problem space to ease the 
computational burden [5]. Most commercially available FDTD 
software also provides geometric theory of diffraction (GTD) 
and Ray Tracing techniques to get around the downside of the 
conventional FDTD [6]. In [7], a modified version of the 3D 
FDTD method has led to a more memory-efficient 
formulation, where only four field components are stored in 
the whole domain, with a direct memory reduction of 33% in 
the storage of the 3D electromagnetic fields. Most recently, 
considerable research has been conducted concerning Parallel 
Computing using the Message Passing Interface (MPI) [8]. 
However massively increasing computational hardware may 
not always be cost effective. In [2], we have demonstrated that 
by reducing 3D problems to 2D, large-scale problems can be 
addressed using regular personal computers (PCs). In this 
paper we present the SFDTD method, which further reduces 
the computational requirements and enhances the feasibility of 
running these simulations on a PC. For reason of simplicity, 
our discussion is focused in a 2D domain though it could be 
extended to address a full 3D situation. We will begin with a 
description of the existing problem, and then discuss how the 
proposed SFDTD method may be applied to a conventional 

FDTD problem. We then undertake the performance 
validations of the SFDTD method using the Plane Earth Model 
as an example. Finally we present the conclusions. 

II. PROBLEM DESCRIPTIONS 

Our simulation is benchmarked using a 3.46GHz, 8GB 
RAM Dell Precision PWS 380 computer. We assume that we 
are dealing with a 2D FDTD simulation and the problem space 
is of the dimension IE× JE, where JE is fixed to be 1000 unit 
cells. According to the Courant Condition [9], which governs 
the essential stability of the FDTD method, we assume that the 
signal takes two time steps to travel through one unit cell in a 
2D simulation, i.e. 
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where t∆ , x∆ and 0c  are the duration of each time step, the 

dimension of each unit cell and the speed of light in a vacuum 
respectively. Fig.1 illustrates the exponentially increasing 
relationship between the size of a problem space and the 
computational execution time using the conventional FDTD 
method. The memory usage in Fig. 2 is seen to increase 
linearly with the length (IE) of the problem space. Note the 
electromagnetic field evolves with time, consequently in a 
large-scale FDTD simulation, a large amount of computational 
power is wasted updating and calculating zero values before 
the signal reaches the distant unit cells while in addition, a 
huge amount of memory is required to hold all these zeros. In 
order to introduce the SFDTD method, consider a problem 

space (IE× JE) of dimension of 52.4 10×  by 310 . This space 
can be divided into 24 individual FDTD simulations (or 

‘segments’) each of size 41.0 10×  by 310 . We will show that 
this results in a large reduction in computation time and 
memory usage. The detailed description of the SFDTD 
implementation will be presented in the next section. 
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Fig. 1.  Problem Space vs. CPU Time 

 
Fig. 2.  Problem Space vs. Memory Usage 

III.  SFDTD METHOD 

For now let us ignore the overheads due to the space taken 
up by other factors, e.g., the absorbing boundaries. The 
following procedures are applied to realise the SFDTD 
concept that is also illustrated in Fig. 3: 
1. Start the conventional FDTD iteration in Segment One 

with the signal source S0. 
2. When Segment One reaches its steady state, i.e., all the 

multipath signals have arrived at each individual cell, then 
record 200 samples: (i) At each unit cell on Interface One. 
(ii) At the points of interest for the path loss investigation.  

3. Save signals of length one-wavelength (i.e., one cycle in 
time domain) from each unit cell recorded at the 2(i) 

interface then form the interface array source S1. Note that 
the extraction of the array source must take place at the 
same sampling point in time; otherwise phase information 
will be lost. The reason for saving one complete 
wavelength of samples is to maintain the signal wave’s 
continuity.  

4. Synchronously propagate the extracted interface array 
source at each corresponding unit cell in Segment Two. 

5. Follow the same steps to complete the simulations in 
Segments 2, 3, 4 and up to 24 for this example. 

Fig. 4.a shows the recorded samples at one unit cell on an 
interface. The unit cell size in our case is one twentieth of the 
wavelength and each unit cell requires two time steps for the 
signal to cross (defined by the Courant Condition). Hence each 
wavelength needs 40 time steps (samples) in order to be 
completely reconstructed and ready to be propagated in the 
next segment. We are also able to tell if a segment has reached 
its steady state by observing these samples. For example, Fig. 
4.b shows the recorded samples before steady state is reached. 

 
                                    (a)             (b) 

Fig. 4.  Recorded samples of an interface cell 

The computational time for the example using a conventional 

FDTD method ( 52.4 10× cells × 1 segment) would take around 
95 days and use over 7.16GB memory to store the data; while 

the SFDTD method ( 41.0 10× cells× 24 segments) only takes 
about 3.9 days with a memory usage of 307MB. 

IV. PLANE EARTH PATH LOSS MODEL 

Now we are going to validate our SFDTD method by 
investigating the signal path loss for horizontally polarized 
antennas in a plane earth environment at a frequency of 
868MHz for a maximum antenna separation of 200m while 
both transmitter and receiver antennas are at a height of 2m. 
The ground is assumed to be perfectly conducting (i.e., metal). 

The well-established analytical formulation for the plane 



PC3-11 

 

3 

earth path loss model in decibels [10] can be expressed as: 

 
Fig. 5.  Plane Earth Model 
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where ρ is the reflection coefficient for the reflected ray; 

th and rh are the heights of the transmitter and receiver 

antennas respectively;k is the free space wave-number 

2π λ whereλ  is the wavelength of the transmitted signal; For 

our example, ρ  in the horizontal polarization can be 

expressed as: 

( ) ( )2 2) ( )(sin cos sin cosHP r rjx jxρ θ ε θ θ ε θ−= − − + − − ,(3) 

where 918 10x fδ= × ⋅ ; rε is relative permittivity of the 

ground; δ  is conductivity of the ground; θ is the angle 
between the incident wave and the ground surface and f  is the 

transmit frequency. 

V. PERFORMANCE VALIDATIONS 

Before we actually perform any simulations in the example 
plane earth environment, we need to firstly determine the total 
number of time steps that are required to achieve steady state. 
Obviously the more time steps that we iterate, the more 
probable it is that the problem space is going to reach steady 
state. The precise exactly number of total time steps required 
differs from environment to environment not only owing to the 
different distances of interest, but also the different multipath 
effects in particular environments. Bearing this in mind, we 
defined the time steps for each individual segment in this 
model as: 8 times the ratio between the distance of interest and 
the cell dimension x∆ (for short, we call it the 8*ratio time 
scheme). Secondly, the distance to the absorbing boundaries 
needs to be minimised. Intuitively, we want to ensure that the 
points of interest are as far as possible from the absorbing 
boundaries so that the effects of reflections can be minimised. 
Our investigations have concluded that it is the JE dimension 
(vertical direction in Fig. 5) that has the most significant effect 
on the simulation results while the IE dimension (along the 
distance of interest, i.e., the horizontal direction in Fig. 5) has 
little effect in this scenario. Following our initial simulations 
regarding this issue, we set JE to 4000 unit cells and set the 
dimension of IE to be just sufficient to hold the absorbing 
boundaries and a distance of 200m unit cells equivalent. 

Therefore the corresponding 2D FDTD problem space is set 
with JE equal to 4000 unit cells and segment lengths of 5m, 
10m, 25m, 50m, 100m or 200m unit cells equivalent 
respectively. The simulation results plotted on a log scale are 

shown in Fig. 6, where the inset panel gives an enlarged view 
of the distortions owing to the different choices of segment 
size. 

 
Fig. 6.  Preliminary SFDTD Simulation Results 

It can be seen that, in general, the SFDTD method produces 
high accuracy results at close ranges regardless of the segment 
size chosen, but shows more variability at longer ranges, 
particularly for smaller segment sizes. Even so it can be seen 
that the SFDTD simulation results fluctuate closely about the 
analytical solution. To tackle this problem we apply a moving 
average based filtering technique. This can be seen to reduce 
the amplitude of the ripples and a very good fit for the various 
segment sizes is achieved as shown in Fig. 7. 

 
Fig. 7.  Moving Averaged Segmented FDTD Simulation Results 

Table 1 summarises the performance of the SFDTD 
method in term of computational time and memory usage. 
Even so, it turns out that we cannot infinitely decrease the 
segment size for better computational performance. For 
example, in Fig. 8, we observe that the use of 2m segments 
gives rise to huge instability. This is because the total number 
of time steps (8*ratio time scheme) that we iterate in each 
segment is not sufficient for the segment to reach its steady 
state. To fix the problem and so achieve stability in the 
SFDTD simulation for the 2m segment size, our time scheme 
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is altered by increasing the total number of time steps from an 
8*ratio time scheme to 20*ratio time scheme as seen in Fig. 8. 

 CPU Time (hrs) Memory Usage (MB) 
200m× 1 segment 55.170 1,474 
100m× 2 segment 28.646    757 
50m  × 4 segments 22.590    399 
25m  × 8 segments   8.745    214 
10m  × 20 segments   4.877    115 
5m    × 40 segments   3.660      77 
2m    × 100 segments   3.350 (unstable)  

  8.375 (stable) 
     60 

TABLE 1. SEGMENTED PLANE EARTH MODEL PERFORMANCE COMPARISONS 
 

 
Fig. 8.  2m Segment stability vs. instability with different time schemes 
Obviously, for a certain time scheme, an optimal (in terms 

of computational performance) segment size exists. The 
relationship between the total CPU execution time and the 
segment size can be calculated as: 

_ _Total CPU Time n dt N= ⋅ ⋅ ,         (4) 

wheren is the number of time steps (iterations) for each 
segment to reach its steady state, dt is the CPU time required 
for each single time step (iteration) in the segment and N is 
the number of segments divided from a problem. To maintain 
the stability of the SFDTD in the plane earth example we have 
discussed, Fig. 9 shows the total CPU time requirements.  

VI. CONCLUSION 

In conclusion, by reducing the segment size and taking the 
stability issue into consideration, the proposed SFDTD 
technique for implementing FDTD modeling allows the CPU 
execution time to increase only linearly with the number of 
segments instead of exponentially increasing as seen in a 
conventional FDTD.  

The SFDTD method also enhances reusability of the 
simulation data. For example, we can use the saved interface 
array sources to further extend the simulation in terms of 
problem dimensions and changes to the simulated 
environment. However, note that the SFDTD method also 
requires that: 
a. The PMLs are reasonably efficient as absorbing boundary 

conditions in order to reduce the overhead owing to each 
segment. 

 
Fig. 9.  Total computational time for the SFDTD stability in the plane earth 

model described in Section IV. 

b. The size of the segments needs to be carefully chosen and 
should include features that have the potential to introduce 
significant effects on the equivalent source array. i.e., signal 
reflections from the next segment must be insignificant 
compared with the signal level in the current segment; 
otherwise, the equivalent array source loses its precision. 
The 2D SFDTD technique will be applied to tunnels and to 

below to above ground situations (i.e., Fire Hydrants) in our 
future work. 
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